Phytokinetics, Inc. Logan, Utah

Ari M. Ferro, Ph. D. President

• Experience relevant to remediation of Peconic River sediments.

Phytoremediation of DDT and chlordane

Peconic River Sediments*

		Max. conc.	
Class	Contaminant	(mg / kg)	
Inorganic	Hg	24.5	
	$\mathbf{A}\mathbf{g}$	171	
	Cu	1140	
Organic	PCBs (arochlor 1254)	1.5	
	DDD	0.096	
	DDE	0.089	
	α-chlordane	0.073	
	γ-chlordane	0.043	
	endosulfan	0.018	

^{*} Proposed Plan for Operable Unit V Peconic River/Sewage Treatment Plant Brookhaven National Laboratory (www.bnl.gov)

<u>Outline</u>

Phytoremediation of organic chemical contaminants

 Greenhouse study for soils contaminated with chlorinated insecticides (DDT/DDD/DDE + chlordane)

Phytoremediation of organic chemical contaminants in soils and sediments

Enhanced biodegradation in the rhizosphere

Plant uptake and metabolism of certain contaminants

Contaminant immobilization (e.g. humification)

- Sugars, organic acids, nucleotides, flavonoids, enzymes
- Sloughed-off cells, mucilagenous material

General increase in microbial cell numbers

- 100 to 1000-fold greater than bulk soil
- Mycorrhizal fungi
- Diverse species of microbes brought together at high population density
 - Enhance stepwise transformation
 - Genetic exchange

Light micrograph of pseudomonads

Rhizosphere: Other Factors Enhancing Contaminant Biodegradation

Exudates may stimulate co-metabolism

Mulberry trees exude phenolic compounds (e.g. flavonoids)

Specifically stimulate PCB-degrading microbes (Fletcher et al.)

Exudates may contain surfactant molecules

Enhanced biodegradation in the root-zone

- Petroleum hydrocarbons
- Polyaromatic hydrocarbons
- Pesticides
- Herbicides
- Chlorinated solvents
- Explosives

Plant Uptake and Metabolism of Organic Contaminants

 Plants take up moderately hydrophobic compounds - some undergo transformation

- DDT/DDD/DDE + chlordane
 - very hydrophobic
 - excluded

Greenhouse Study -- Protocol

- Plant establishment 5 weeks
- Treatment: flood aerobic cycles (8weeks/cycle)
- Controls
 - Anaerobic columns maintained under flooded conditions
 - Aerobic columns maintained under aerobic conditions
- Triplicate sets of columns harvested at intervals (61, 116, 172 days)
- Soils extracted; gas chromatographic analysis of extracts

Contaminant Immobilization in Planted Systems

- Sorption of hydrophobic contaminants to plant roots ("phytostabilization")
- Formation of "bound residues" in plant roots
 - Non-extractable; sequestered in lignin fraction
 - Examples: TNT, PCP, pesticides
- "Humification" formation of covalent (non-extractable) complexes with humus
 - Oxido-reductase enzymes on external root surface (e.g. peroxidases, lacasses)
 - Enzyme oxidation can polymerize xenobiotics into soil humic fraction (e.g. chlorinated phenols)

Greenhouse treatability study for soils contaminated with chlorinated insecticides

Greenhouse study

- Contaminated soils from an East coast industrial site
- Preliminary phytotoxicity study to select tolerant plants

Species	DDT				
		(mg / kg)			
	< 0.5	50	145	605	
Redtop (Agrostis alba)	++++	++++	-	-	
Deertongue (Panicum sp.)	+++	++++	+	-	
Reed Canarygrass (phalaris arundinacea)	+++	++++	++++	++	
Canadian bluegrass (<i>Poa</i> compressa)	++++	++++	+++	+	

Greenhouse study – experimental system

- Contaminated soils
 - Soil A (145 mg DDT/Kg)
 - Soil B (50 mg DDT/kg)
- Soil columns planted with reed canarygrass
- Objective -- Test hypothesis that biodegradation of organochlorine insecticides can be stimulated by repeated flooded/aerobic cycles

Soils used for the greenhouse experiment

Contaminant	Soil		
	A	В	
	(mg/kg)	(mg/kg)	
DDT	144.5	50.2	
DDD	9.3	10.4	
DDE	31.8	12.9	
∝-chlordane	196.4	27.7	
γ-chlordane	221.2	29.4	

Reed canarygrass

- Tolerant of the contaminated soil
- Native to Northeastern U.S.
- Wetland species
 - Tolerant of flood/well drained conditions
 - Provides cover for birds and wildlife

Greeenhouse Study – Protocol (continued)

• Triplicate sets of columns harvested at intervals (61, 116, 172 days)

Soils extracted; gas chromatographic analysis of extracts

DDD

Conclusions from the Greenhouse Study

- Concentrations of DDD and DDE decreased with time in all treatments
 - DDE did not accumulate in the aerobic treatment
 - DDD did not accumulate in the flooded treatment
 - Concentration of DDX decreased with time
- Concentration of α-chlordane decreased with time in all treatment
- Significant treatment-specific effects were not generally observed (no unplanted experimental controls were included in the study)

Chlordane

DDE

